By Topic

QoS-Aware Web Service Recommendation by Collaborative Filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zibin Zheng ; The Chinese University of Hong Kong, Hong Kong ; Hao Ma ; Michael R. Lyu ; Irwin King

With increasing presence and adoption of Web services on the World Wide Web, Quality-of-Service (QoS) is becoming important for describing nonfunctional characteristics of Web services. In this paper, we present a collaborative filtering approach for predicting QoS values of Web services and making Web service recommendation by taking advantages of past usage experiences of service users. We first propose a user-collaborative mechanism for past Web service QoS information collection from different service users. Then, based on the collected QoS data, a collaborative filtering approach is designed to predict Web service QoS values. Finally, a prototype called WSRec is implemented by Java language and deployed to the Internet for conducting real-world experiments. To study the QoS value prediction accuracy of our approach, 1.5 millions Web service invocation results are collected from 150 service users in 24 countries on 100 real-world Web services in 22 countries. The experimental results show that our algorithm achieves better prediction accuracy than other approaches. Our Web service QoS data set is publicly released for future research.

Published in:

IEEE Transactions on Services Computing  (Volume:4 ,  Issue: 2 )