By Topic

View-invariant Fall Detection for Elderly in Real Home Environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shoaib, Muhammad ; Inst. fur Informationsverarbeitung, Leibniz Univ., Hannover, Germany ; Dragon, R. ; Ostermann, J.

We propose a novel context based human fall detection mechanism in real home environment. Fall incidents are detected using head and floor information. The centroid location of the head and feet from each frame are used to learn a context model consisting of normal head and floor blocks. Every floor block has its associated Gaussian distribution, representing a set of head blocks. This Gaussian distribution defines standard vertical distance as average height of an object at that specific floor block. The classification of blocks and average height is later used to detect a fall. Fall detection methods often detect bending situations as fall. This method is able to distinguish bending and sitting from falling. Furthermore, a fall into any direction and at any distance from camera can be detected. Evaluation results show the robustness and high accuracy of the proposed approach.

Published in:

Image and Video Technology (PSIVT), 2010 Fourth Pacific-Rim Symposium on

Date of Conference:

14-17 Nov. 2010