By Topic

Object Tracking Based on Covariance Descriptors and On-Line Naive Bayes Nearest Neighbor Classifier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pedro Manuel Cortez Cargill ; Dept. de Cienc. de la Comput., Pontificia Univ. Catolica de Chile, Santiago, Chile ; Domingo Mery Quiroz ; Luis Enrique Sucar

Object tracking in video sequences has been extensively studied in computer vision. Although promising results have been achieved, often the proposed solutions are tailored for particular objects, structured to specific conditions or constrained by tight guidelines. In real cases it is difficult to recognize these situations automatically because a large number of parameters must be tuned. Factors such as these make it necessary to develop a method robust to various environments, situations and occlusions. This paper proposes a new simple appearance model, with only one parameter, which is robust to prolonged partial occlusions and drastic appearance changes. The proposed strategy is based on covariance descriptors (which represent the tracked object) and an on-line nearest neighbor classifier (to track the object in the sequence). The proposed method performs exceptionally well and reduces the average error (in pixels) by 47% compared with tracking methods based on on-line boosting.

Published in:

Image and Video Technology (PSIVT), 2010 Fourth Pacific-Rim Symposium on

Date of Conference:

14-17 Nov. 2010