By Topic

Guessing Revisited: A Large Deviations Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Manjesh Kumar Hanawal ; Laboratoire Informatique d'Avignon, INRIA and University of Avignon, Avignon cedex 9, France ; Rajesh Sundaresan

The problem of guessing a random string is revisited. A close relation between guessing and compression is first established. Then it is shown that if the sequence of distributions of the information spectrum satisfies the large deviation property with a certain rate function, then the limiting guessing exponent exists and is a scalar multiple of the Legendre-Fenchel dual of the rate function. Other sufficient conditions related to certain continuity properties of the information spectrum are briefly discussed. This approach highlights the importance of the information spectrum in determining the limiting guessing exponent. All known prior results are then re-derived as example applications of our unifying approach.

Published in:

IEEE Transactions on Information Theory  (Volume:57 ,  Issue: 1 )