Cart (Loading....) | Create Account
Close category search window
 

Information Theoretic Proofs of Entropy Power Inequalities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Rioul, O. ; Inst. Telecom, Telecom ParisTech, Paris, France

While most useful information theoretic inequalities can be deduced from the basic properties of entropy or mutual information, up to now Shannon's entropy power inequality (EPI) is an exception: Existing information theoretic proofs of the EPI hinge on representations of differential entropy using either Fisher information or minimum mean-square error (MMSE), which are derived from de Bruijn's identity. In this paper, we first present an unified view of these proofs, showing that they share two essential ingredients: 1) a data processing argument applied to a covariance-preserving linear transformation; 2) an integration over a path of a continuous Gaussian perturbation. Using these ingredients, we develop a new and brief proof of the EPI through a mutual information inequality, which replaces Stam and Blachman's Fisher information inequality (FII) and an inequality for MMSE by Guo, Shamai, and Verdú used in earlier proofs. The result has the advantage of being very simple in that it relies only on the basic properties of mutual information. These ideas are then generalized to various extended versions of the EPI: Zamir and Feder's generalized EPI for linear transformations of the random variables, Takano and Johnson's EPI for dependent variables, Liu and Viswanath's covariance-constrained EPI, and Costa's concavity inequality for the entropy power.

Published in:

Information Theory, IEEE Transactions on  (Volume:57 ,  Issue: 1 )

Date of Publication:

Jan. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.