By Topic

Outlier Detection in Smart Environment Structured Power Datasets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vikramaditya Jakkula ; Dept. of E.E.C.S., Washington State Univ., Pullman, WA, USA ; Diane Cook

Household electricity consumption is a direct contributor to household expenses. Electricity acts as a backbone for a strong economy [1]. The rise in the energy consumption is clearly observed in this past decade, and so is the rise in the need for energy efficiency and conservation [2]. Monitoring power consumption by using various devices and instruments is on the rise; however a smart environment scenario needs more than just real-time monitoring. The need for identifying abnormal power consumption is clearly present. In this paper, we introduce our work on building novel outlier detection algorithms which uses statistical techniques to identify outliers and anomalies in power datasets collected in smart environments. We also experiment clustering techniques on the same dataset and report the results found.

Published in:

Intelligent Environments (IE), 2010 Sixth International Conference on

Date of Conference:

19-21 July 2010