By Topic

Controlling Bandgap in Electroactive Polymer-Based Structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gei, M. ; Dept. of Mech. & Struct. Eng., Univ. of Trento, Trento, Italy ; Roccabianca, S. ; Bacca, M.

A waveguide with a periodic structure is able to filter waves whose frequencies lie in the band-gap ranges displayed in dispersion diagrams. The lengths of these forbidden bands depend on the contrast in material and geometrical properties of parts of the system which realize the periodicity. In this paper, a novel way to control band gaps is proposed: to set the geometric characteristics of a prestretched waveguide made of soft dielectric elastomer applying an external voltage to pairs of electrodes applied with a regular pattern on the device. The technique proves to be feasible and is able to tune accurately the position of band gaps over all frequency spectrum. For the investigated system, a device able to guide flexural waves, bandgap ranges of about 100-200 Hz have been obtained over frequencies on the order of 1 kHz.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:16 ,  Issue: 1 )