By Topic

Sparse representation-based synthetic aperture radar imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Samadi, S. ; Sch. of Electr. & Comput. Eng., Shiraz Univ., Shiraz, Iran ; Çetin, M. ; Masnadi-Shirazi, M.A.

There is increasing interest in using synthetic aperture radar (SAR) images in automated target recognition and decision-making tasks. The success of such tasks depends on how well the reconstructed SAR images exhibit certain features of the underlying scene. Based on the observation that typical underlying scenes usually exhibit sparsity in terms of such features, this paper presents an image formation method that formulates the SAR imaging problem as a sparse signal representation problem. For problems of complex-valued nature, such as SAR, a key challenge is how to choose the dictionary and the representation scheme for effective sparse representation. Since features of the SAR reflectivity magnitude are usually of interest, the approach is designed to sparsely represent the magnitude of the complex-valued scattered field. This turns the image reconstruction problem into a joint optimisation problem over the representation of magnitude and phase of the underlying field reflectivities. The authors develop the mathematical framework for this method and propose an iterative solution for the corresponding joint optimisation problem. The experimental results demonstrate the superiority of this method over previous approaches in terms of both producing high-quality SAR images and exhibiting robustness to uncertain or limited data.

Published in:

Radar, Sonar & Navigation, IET  (Volume:5 ,  Issue: 2 )