Cart (Loading....) | Create Account
Close category search window
 

Pseudoelastic stacking fault and deformation twinning in nanocrystalline Ni

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Li, B.Q. ; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People''s Republic of China ; Sui, M.L. ; Mao, S.X.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3527976 

It is usually believed that the partial dislocation and deformation twin are the results of permanent plasticity in materials. Here, we present in situ atomic-scale observation of reversible stacking fault and deformation twin during loading and unloading in nanocrystalline Ni under high-resolution transmission electron microscopy. The high propensity for the reversibility of the stacking fault and deformation twin is due to the high stacking fault force and small grain size, and will provide an understanding at atomistic scale on the nature of the deformation in nanocrystalline materials.

Published in:

Applied Physics Letters  (Volume:97 ,  Issue: 24 )

Date of Publication:

Dec 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.