By Topic

Lower Upper Bound Estimation Method for Construction of Neural Network-Based Prediction Intervals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Khosravi, A. ; Center for Intelli gent Syst. Res., Deakin Univ., Geelong, VIC, Australia ; Nahavandi, S. ; Creighton, D. ; Atiya, A.F.

Prediction intervals (PIs) have been proposed in the literature to provide more information by quantifying the level of uncertainty associated to the point forecasts. Traditional methods for construction of neural network (NN) based PIs suffer from restrictive assumptions about data distribution and massive computational loads. In this paper, we propose a new, fast, yet reliable method for the construction of PIs for NN predictions. The proposed lower upper bound estimation (LUBE) method constructs an NN with two outputs for estimating the prediction interval bounds. NN training is achieved through the minimization of a proposed PI-based objective function, which covers both interval width and coverage probability. The method does not require any information about the upper and lower bounds of PIs for training the NN. The simulated annealing method is applied for minimization of the cost function and adjustment of NN parameters. The demonstrated results for 10 benchmark regression case studies clearly show the LUBE method to be capable of generating high-quality PIs in a short time. Also, the quantitative comparison with three traditional techniques for prediction interval construction reveals that the LUBE method is simpler, faster, and more reliable.

Published in:

Neural Networks, IEEE Transactions on  (Volume:22 ,  Issue: 3 )