By Topic

Power-Tracking Embedded Buck–Boost Converter With Fast Dynamic Voltage Scaling for the SoC System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Yu-Huei Lee ; Inst. of Electr. Control Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Shao-Chang Huang ; Shih-Wei Wang ; Wei-Chan Wu
more authors

A power-tracking embedded buck-boost converter with a fast dynamic voltage scaling (F-DVS) function is proposed to power the system-on-a-chip (SoC) system. To meet the power request of the SoC for different operation functions, fast up/down-tracking is implemented to achieve the F-DVS function. Recycling energy is also derived to minimize power dissipation during the down-tracking period. In addition, the peak current control and valley current control methods are utilized in the buck and boost operations, respectively, to minimize the effect of switching noise in high switching operation for compact solution. Moreover, the self-tuning pulse skipping mechanism extends the effective duty cycle to achieve voltage regulation and improves efficiency when the input voltage is close to that of the output. Through F-DVS, the tracking speed from 3 to 2 V and vice versa are 15 and 20 μs, respectively, with a high switching frequency of 5 MHz.

Published in:

Power Electronics, IEEE Transactions on  (Volume:27 ,  Issue: 3 )