By Topic

A New Zone-Control Induction Heating System Using Multiple Inverter Units Applicable Under Mutual Magnetic Coupling Conditions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hideaki Fujita ; Tokyo Institute of Technology , Tokyo, Japan ; Naoki Uchida ; Kazuhiro Ozaki

This paper proposes a new “zone-control induction heating” (ZCIH) system consisting of two or more sets of a high-frequency inverter unit and a work coil. The work coils are wound around a single susceptor as close as possible to reduce a leakage magnetic flux. The inverters independently control the amplitude of each coil current to adjust the power provided to the work coil and/or the heat generated in each zone of the susceptor. As a result, the ZCIH system enables a temperature uniformity not only in a heating-up period but also in a temperature-maintaining period. Theoretical analysis derives the control performance of the current amplitude, and implies that the phase-angle control of the coil current is required to adjust the current amplitude in a wide range. This paper presents experimental results obtained from a laboratory setup and a six-zone prototype for semiconductor processing.

Published in:

IEEE Transactions on Power Electronics  (Volume:26 ,  Issue: 7 )