By Topic

Streaming satellite data to cloud workflows for on-demand computing of environmental data products

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Daniel Zinn ; UC Davis Genome Center, University of California, USA ; Quinn Hart ; Bertram Ludäscher ; Yogesh Simmhan

Environmental data arriving constantly from satellites and weather stations are used to compute weather coefficients that are essential for agriculture and viticulture. For example, the reference evapotranspiration (ET0) coefficient, overlaid on regional maps, is provided each day by the California Department of Water Resources to local farmers and turf managers to plan daily water use. Scaling out single-processor compute/data intensive applications operating on realtime data to support more users and higher-resolution data poses data engineering challenges. Cloud computing helps data providers expand resource capacity to meet growing needs besides supporting scientific needs like reprocessing historic data using new models. In this article, we examine migration of a legacy script used for daily ET0 computation by CIMIS to a workflow model that eases deployment to and scaling on the Windows Azure Cloud. Our architecture incorporates a direct streaming model into Cloud virtual machines (VMs) that improves the performance by 130% to 160% for our workflow over using Cloud storage for data staging, used commonly. The streaming workflows achieve runtimes comparable to desktop execution for single VMs and a linear speed-up when using multiple VMs, thus allowing computation of environmental coefficients at a much larger resolution than done presently.

Published in:

Workflows in Support of Large-Scale Science (WORKS), 2010 5th Workshop on

Date of Conference:

14-14 Nov. 2010