By Topic

Prioritized medium access in ad-hoc networks with a SystemClick model of the IEEE 802.11n MAC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Oliver Hoffmann ; Communication Technology Institute, Dortmund University of Technology, Germany ; Falk-Moritz Schaefer ; RĂ¼diger Kays ; Christian Sauer
more authors

For ad-hoc home networks without central coordinator, IEEE 802.11 systems merely support service differentiation. In many usage scenarios of a typical home network with applications requiring a strict quality of service (QoS), this MAC functionality is not sufficient. In order to counteract this problem, we developed in previous works a modified MAC scheme based on the IEEE 802.11 enhanced distributed channel access (EDCA) function. This paper describes enhancements of the modified MAC scheme enforcing prioritized medium access for strict QoS applications. For the first time, the established concept is realized in a distributed way with in-band signaling. Our enhanced MAC is embedded into a comprehensive IEEE 802.11n reference application to demonstrate its effectiveness in combination with the latest amendments like frame aggregation. The reference application is modeled in SystemClick, a framework for describing and evaluating packet processing applications on resource constraint network nodes. This enables functional validation and provides a path to future, cost-efficient implementations on programmable devices. On this basis, the paper presents simulation results substantiating the significant improvement of QoS parameters like delay and throughput. Besides enforcing strict priorities, collisions can be reduced to zero and the average waiting time can be decreased by up to 33 % for typical usage scenarios.

Published in:

21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications

Date of Conference:

26-30 Sept. 2010