By Topic

Toward Automated ECOs in FPGAs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ling, A.C. ; CAD Team, Toronto, ON, Canada ; Brown, S.D. ; Safarpour, S. ; Jianwen Zhu

Engineering change orders (ECOs), which are used to apply late-stage specification changes and bug fixes, have become an important part of the field-programmable gate array design flow. ECOs are beneficial since they are applied directly to a placed-and-routed netlist which preserves most of the engineering effort invested previously. Unfortunately, designers often apply ECOs in a manual fashion which may have an unpredictable impact on the design's final correctness and end costs. As a solution, this paper introduces an automated method to tackle the ECO problem. This paper uses a novel resynthesis technique which can automatically update the functionality of a circuit by leveraging the existing logic within the design, thereby removing the inefficient manual effort required by a designer. The technique presented in this paper is robust enough to handle a wide range of changes. Furthermore, the technique can successfully make late-stage functional changes while minimally perturbing the placed-and-routed netlist: something that is necessary for ECOs. Also, this technique does this with a minimal impact on the circuit performance where on average over 90% of the placement and routing wires remain unchanged.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:30 ,  Issue: 1 )