By Topic

Body-Bias-Driven Design Strategy for Area- and Performance-Efficient CMOS Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Maurice Meijer ; Central R&D division of NXP Semiconductors, Eindhoven, The Netherlands ; José Pineda de Gyvez

Worst-case design uses extreme process corner conditions which rarely occur. This limits maximum speed specifications and costs additional power due to area over-dimensioning during synthesis. We present a new design synthesis strategy for digital CMOS circuits that makes use of forward body biasing. Our approach renders consistently a better performance-per-area ratio by constraining circuit over-dimensioning without sacrificing circuit performance. An in-depth analysis of the body-bias-driven design theory is provided. It is complemented by an algorithm that enables fast reconstruction of the area-clock period tradeoff curve of the design. We validated these new concepts through industrial processor designs in 90-nm low-power CMOS. For standard- Vth implementations, we observed performance-per-area improvements up to 40%, area and leakage reductions up to 30%, and dynamic power savings of up to 10% without performance penalties as a benefit from our proposed body-bias-driven design strategy. The benefits are larger for high-Vth implementations. In this case, we observed performance-per-area improvements up to 90%, area and leakage reductions up to 40%, and dynamic power savings of up to 25% without performance penalties.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:20 ,  Issue: 1 )