By Topic

Automatic Road Environment Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tang, I. ; INSA de ROUEN, Rouen, France ; Breckon, T.P.

The ongoing development autonomous vehicles and adaptive vehicle dynamics present in many modern vehicles has generated a need for road environment classification - i.e., the ability to determine the nature of the current road or terrain environment from an onboard vehicle sensor. In this paper, we investigate the use of a low-cost camera vision solution capable of urban, rural, or off-road classification based on the analysis of color and texture features extracted from a driver's perspective camera view. A feature set based on color and texture distributions is extracted from multiple regions of interest in this forward-facing camera view and combined with a trained classifier approach to resolve two road-type classification problems of varying difficulty - {off-road, on-road} environment determination and the additional multiclass road environment problem of {off-road, urban, major/trunk road and multilane motorway/carriageway}. Two illustrative classification approaches are investigated, and the results are reported over a series of real environment data. An optimal performance of ~90% correct classification is achieved for the {off-road, on-road} problem at a near real-time classification rate of 1 Hz.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:12 ,  Issue: 2 )