By Topic

Combining Mixed Integer Programming and Supervised Learning for Fast Re-planning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rachelson, E. ; Dept. of EECS, Univ. of Liege, Liege, Belgium ; Ben Abbes, A. ; Diemer, S.

We introduce a new plan repair method for problems cast as Mixed Integer Programs. In order to tackle the inherent complexity of these NP-hard problems, our approach relies on the use of Supervised Learning method for the offline construction of a predictor which takes the problem's parameters as input and infers values for the discrete optimization variables. This way, the online resolution time of the plan repair problem can be greatly decreased by avoiding a large part of the combinatorial search among discrete variables. This contribution was motivated by the large-scale problem of intra-daily recourse strategy computation in electrical power systems. We report and discuss results on this benchmark, illustrating the different aspects and mechanisms of this new approach which provided close-to-optimal solutions in only a fraction of the computational time necessary for existing solvers.

Published in:

Tools with Artificial Intelligence (ICTAI), 2010 22nd IEEE International Conference on  (Volume:2 )

Date of Conference:

27-29 Oct. 2010