Cart (Loading....) | Create Account
Close category search window

Replacement Paths via Fast Matrix Multiplication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Weimann, O. ; Dept. of Comput. Sci. & Appl. Math., Weizmann Inst. of Sci., Rehovot, Israel ; Yuster, R.

Let G be a directed edge-weighted graph and let P be a shortest path from s to t in G. The replacement paths problem asks to compute, for every edge e on P, the shortest s-to-t path that avoids e. Apart from approximation algorithms and algorithms for special graph classes, the naive solution to this problem - removing each edge e on P one at a time and computing the shortest s-to-t path each time - is surprisingly the only known solution for directed weighted graphs, even when the weights are integrals. In particular, although the related shortest paths problem has benefited from fast matrix multiplication, the replacement paths problem has not, and still required cubic time. For an n-vertex graph with integral edge-lengths between -M and M, we give a randomized algorithm that uses fast matrix multiplication and is sub-cubic for appropriate values of M. We also show how to construct a distance sensitivity oracle in the same time bounds. A query (u,v,e) to this oracle requires sub-quadratic time and returns the length of the shortest u-to-v path that avoids the edge e. In fact, for any constant number of edge failures, we construct a data structure in sub-cubic time, that answer queries in sub-quadratic time. Our results also apply for avoiding vertices rather than edges.

Published in:

Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on

Date of Conference:

23-26 Oct. 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.