By Topic

Network Traffic Prediction Based on Multifractal MLD Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Li Hong ; Sch. of Electr. Infromation Eng., Dongbei Pet. Univ., Daqing, China ; Yan Tie ; Wang Lanlan

In this paper, a multifractal approach to the classification of unknown self affine signals is presented as an improvement over traditional traffic signal. The fundamental advantages of using multifractal measures include normalization and a very high compression ratio of a signature of the traffic, thereby leading to faster implementations, and the abiliiy to add new traffic classes without redesigning the traffic classifier. Mixed logical dynamical (MLD) modeling appears as an effective and realistic approach in modeling and control of hybrid systems. In this paper, the MLD framework is used for modeling of a multi-server system as a switched nonlinear system. Control of data flow in multiple servers is considered as a case study for predictive control of MLD systems. It is a good model for network traffic control and research as shown in the simulation.

Published in:

Chaos-Fractals Theories and Applications (IWCFTA), 2010 International Workshop on

Date of Conference:

29-31 Oct. 2010