Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Fast Approximation Algorithms for Cut-Based Problems in Undirected Graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Madry, A. ; Massachusetts Inst. of Technol., Cambridge, MA, USA

We present a general method of designing fast approximation algorithms for cut-based minimization problems in undirected graphs. In particular, we develop a technique that given any such problem that can be approximated quickly on trees, allows approximating it almost as quickly on general graphs while only losing a poly-logarithmic factor in the approximation guarantee. To illustrate the applicability of our paradigm, we focus our attention on the undirected sparsest cut problem with general demands and the balanced separator problem. By a simple use of our framework, we obtain poly-logarithmic approximation algorithms for these problems that run in time close to linear. The main tool behind our result is an efficient procedure that decomposes general graphs into simpler ones while approximately preserving the cut-flow structure. This decomposition is inspired by the cut-based graph decomposition of R"acke that was developed in the context of oblivious routing schemes, as well as, by the construction of the ultrasparsifiers due to Spiel man and Teng that was employed to preconditioning symmetric diagonally-dominant matrices.

Published in:

Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on

Date of Conference:

23-26 Oct. 2010