Cart (Loading....) | Create Account
Close category search window
 

Boosting and Differential Privacy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dwork, C. ; Microsoft Res., Mountain View, CA, USA ; Rothblum, G.N. ; Vadhan, S.

Boosting is a general method for improving the accuracy of learning algorithms. We use boosting to construct improved privacy-pre serving synopses of an input database. These are data structures that yield, for a given set Q of queries over an input database, reasonably accurate estimates of the responses to every query in Q, even when the number of queries is much larger than the number of rows in the database. Given a base synopsis generator that takes a distribution on Q and produces a "weak" synopsis that yields "good" answers for a majority of the weight in Q, our Boosting for Queries algorithm obtains a synopsis that is good for all of Q. We ensure privacy for the rows of the database, but the boosting is performed on the queries. We also provide the first synopsis generators for arbitrary sets of arbitrary low-sensitivity queries, i.e., queries whose answers do not vary much under the addition or deletion of a single row. In the execution of our algorithm certain tasks, each incurring some privacy loss, are performed many times. To analyze the cumulative privacy loss, we obtain an O(ε2) bound on the expected privacy loss from a single e-differentially private mechanism. Combining this with evolution of confidence arguments from the literature, we get stronger bounds on the expected cumulative privacy loss due to multiple mechanisms, each of which provides e-differential privacy or one of its relaxations, and each of which operates on (potentially) different, adaptively chosen, databases.

Published in:

Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on

Date of Conference:

23-26 Oct. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.