Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

On-line control strategies to minimize peak loads on mine conveyor networks using surge units with variable discharging capability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yingling, Jon C. ; Dept. of Min. Eng., Kentucky Univ., Lexington, KY, USA ; Luo, Z. ; Sottile, J.

Control of peak loads on gathering belts in mine conveyor systems can result in substantial reductions in power consumption as well as savings in capital and maintenance costs for the conveyor equipment. This paper first extends an existing control approach involving dynamic adjustment of feeder discharge rates to the case where the differences in transit times between section feeders and the gathering belts where the flows converge are small. It is shown that multiple units should be considered simultaneously when determining control actions, and a dynamic programming approach is given for determining the optimal control policy in such a situation. Subsequently, the application of this approach is considered for longwall mines where flow from the longwall is not controlled, but the discharge rates of continuous miner section feeders are adjusted in real-time to prevent belt overloading while minimizing any production constraint on the continuous miner units. This application requires special treatment for the highly variable material flow pattern produced by longwalls. The practical utility of these approaches is evaluated through detailed simulation studies. These studies are used to estimate the magnitude of savings in energy, capital, and maintenance costs

Published in:

Industry Applications, IEEE Transactions on  (Volume:33 ,  Issue: 1 )