By Topic

Face recognition system using multi layer feed Forward Neural Networks and Principal Component Analysis with variable learning rate

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Bhati, R. ; Acropolis Inst. of Technol. & Res., Indore, India

In this paper we have proposed a new way to achieve the optimum learning rate that can reduce the learning time of the multi layer feed forward neural network. The effect of optimum numbers of inner iterations and numbers of hidden nodes on learning time and recognition rate has been shown. The Principal Component Analysis and Multilayer Feed Forward Neural Network are applied in face recognition system for feature extraction and recognition respectively. The paper shows that the recognition rate and training time are dependent on numbers on hidden nodes. In this approach we have used variable learning rate and demonstrated its superiority over constant learning rate. We have used ORL database for all the experiments.

Published in:

Communication Control and Computing Technologies (ICCCCT), 2010 IEEE International Conference on

Date of Conference:

7-9 Oct. 2010