By Topic

CCAM: a connectivity-clustered access method for networks and network computations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shashi Shekhar ; Dept. of Comput. Sci., Minnesota Univ., Minneapolis, MN, USA ; Duen-Ren Liu

Current spatial database management systems (SDBMS) provide efficient access methods and operators for point and range queries over collections of spatial points, line segments, and polygons. However, it is not clear if existing spatial access methods can efficiently support network computations which traverse line segments in a spatial network based on connectivity rather than geographic proximity. The expected I/O cost for many network operations can be reduced by maximizing the Weighted Connectivity Residue Ratio (WCRR), i.e., the chance that a pair of connected nodes that are more likely to be accessed together are allocated to a common page of the file. CCAM is an access method for general networks that uses connectivity clustering. CCAM supports the operations of insert, delete, create, and find as well as the new operations, get-A-successor and get-successors, which retrieve one or all successors of a node to facilitate aggregate computations on networks. The nodes of the network are assigned to disk pages via a graph partitioning approach to maximize the WCRR. CCAM includes methods for static clustering, as well as dynamic incremental reclustering, to maintain high WCRR in the face of updates, without incurring high overheads. We also describe possible modifications to improve the WCRR that can be achieved by existing spatial access methods. Experiments with network computations on the Minneapolis road map show that CCAM outperforms existing access methods, even though the proposed modifications also substantially improve the performance of existing spatial access methods

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:9 ,  Issue: 1 )