By Topic

Spatial localization of concurrent multiple sound sources

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Huakang Li ; School of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu, Japan, 965-8580 ; Akira Saji ; Keita Tanno ; Jun Ma
more authors

Based on the human auditory system for spatial localization theory, we proposed a spatial localization of multiple sound sources using a spherical robot head. Space sound vectors recorded by a microphone array with spatial configuration, are used to estimate the histograms of spatial arrival time difference vectors by solving the simultaneous equations in different frequency bands. The echo avoidance model based on precedence effect is used to reduce the interference of environment reverberations which provide the strong interference for phase vectors especially in small indoor environments. To integrate spatial cues of different microphone pairs, we propose a mapping method from the correlation between different microphone pairs to a 3D map corresponding to azimuth and elevation of sound sources directions. Experiments indicate that the system provides the distribution of sound source in azimuth-elevation localization, even concurrently in reverberant environments.

Published in:

Aware Computing (ISAC), 2010 2nd International Symposium on

Date of Conference:

1-4 Nov. 2010