Cart (Loading....) | Create Account
Close category search window

Multiobjective Approach for Feature Selection in Maximum Entropy Based Named Entity Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ekbal, A. ; Univ. of Trento, Trento, Italy ; Saha, S. ; Hasanuzzaman, M.

In this paper, we present the problem of appropriate feature selection for constructing a Maximum Entropy (ME) based Named Entity Recognition (NER) system under the multiobjective optimization (MOO) framework. Two conflicting objective functions are simultaneously optimized using the search capability of MOO. These objectives are (i). the dimensionality of features, which is tried to be minimized, and (ii). the corresponding F-measure value of the classifier, trained using the features present, is maximized. The features are encoded in the chromosomes. Thereafter, a multiobjective evolutionary algorithm in the steps of a popular MOO technique, NSGA-II, is developed to determine the appropriate feature subset. The proposed technique is evaluated to determine the suitable feature combinations for NER in a resource-constrained language, namely Bengali. Evaluation results yield the recall, precision and F-measure values of 72.45%, 82.39% and 77.11%, respectively.

Published in:

Tools with Artificial Intelligence (ICTAI), 2010 22nd IEEE International Conference on  (Volume:1 )

Date of Conference:

27-29 Oct. 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.