Cart (Loading....) | Create Account
Close category search window

An Adaptive Fuzzy Classifier Approach to Edge Detection in Latent Fingerprint Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ramirez Rochac, J.F. ; Dept. of Comput. Sci. & Inf. Technol., Univ. of the District of Columbia, Washington, DC, USA ; Liang, L. ; Byunggu Yu ; Zhao Lu

This paper proposes an Adaptive Fuzzy Classifier Approach (AFCA) to local edge detection in order to address the challenges of detecting latent fingerprint in severely degraded images. The proposed approach adapts classifier parameters to different parts of input images using the concept of reference neighborhood. Three variants of AFCAs, namely K-means-clustering AFCA, Entropy-based AFCA, and Statistical AFCA, were developed. Experiments were conducted both on synthetic images and on real fingerprint images to compare these AFCAs and Canny edge detection. The presented results show that Statistical AFCA is the best performer with latent images.

Published in:

Tools with Artificial Intelligence (ICTAI), 2010 22nd IEEE International Conference on  (Volume:1 )

Date of Conference:

27-29 Oct. 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.