Cart (Loading....) | Create Account
Close category search window
 

Estimation of bending behavior of an ionic polymer metal composite actuator using a nonlinear black-box model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dinh Quang Truong ; Grad. Sch. of Mech. & Automotive Eng., Univ. of Ulsan, Ulsan, South Korea ; Kyoung Kwan Ahn ; Doan Ngoc Chi Nam ; Jong Il Yoon

An ion polymer metal composite (IPMC) is an electro-active polymer that bends in response to a small applied electrical field as a result of mobility of cations in the polymer network and vice versa. This paper presents a novel accurate nonlinear black-box model (NBBM) for estimating the bending behavior of IPMC. The NBBM is based on a recurrent multi-layer perceptron neural network (RMLPNN) and a self-adjustable learning mechanism (SALM). The model parameters are optimized by using training data. A comparison of the estimated and real IPMC bending characteristic has been done to investigate the modeling ability of the designed NBBM.

Published in:

Control Automation and Systems (ICCAS), 2010 International Conference on

Date of Conference:

27-30 Oct. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.