By Topic

Modeling of peak-to-peak switching noise along a vertical chain of power distribution TSV pairs in a 3D stack of ICs interconnected through TSVs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ahmad, W. ; Dept. of Electron. & Comput. Syst., KTH R. Inst. of Technol., Kista, Sweden ; Qiang Chen ; Li-Rong Zheng ; Tenhunen, H.

On-chip power supply noise has become a bottleneck in 3D ICs as scaling of the supply network impedance has not been kept up with increasing device densities and operating currents with each technology node due to limited wire resources. In this paper we proposed an efficient and accurate model to estimate peak-to-peak switching noise, caused by simultaneous switching of logic loads along a vertical chain of power distribution TSV pairs in a 3D stack of ICs. The proposed model is quite accurate with only 2-3% difference from Ansoft Nexxim4.1 equivalent model. The proposed model is 3-4 times faster than Nexxim4.1 as well as consumes two times less memory as compared to Nexxim4.1equivalent model. We analyzed peak-to-peak switching noise along a vertical chain of power distribution TSV pairs by varying physical dimensions of TSVs and value of decoupling capacitance. We also thoroughly investigated the peak-to-peak noise sensitivity to TSV effective inductance and decoupling capacitance.

Published in:

NORCHIP, 2010

Date of Conference:

15-16 Nov. 2010