By Topic

Application of biogeography-based optimisation to solve different optimal power flow problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bhattacharya, A. ; Dept. of Electr. Eng., Jadavpur Univ., Kolkata, India ; Chattopadhyay, P.K.

This study presents a biogeography-based optimisation (BBO) algorithm to solve optimal power flow (OPF) problems of a power system with generators that may have either convex or non-convex fuel cost characteristics. Different operational constraints, such as generator capacity limits, power balance constraints, line flow and bus voltages limits and so on, have been considered. Settings of transformer tap ratio and reactive power compensating devices have also been included as the control variables in the problem formulation. Biogeography describes how a species arises, migrates from one habitat to another and eventually gets wiped out. The algorithm developed using this concept is known as BBO, which searches for the global optimum mainly through two steps: migration and mutation. BBO has been implemented for three different objectives that reflect fuel cost minimisation, voltage profile and voltage stability improvement with the OPF embedded on IEEE 30-bus system. The superiority of the proposed method over other methods has been demonstrated for these three different objectives. Considering the quality of the solution obtained by the proposed method seems to be a promising alternative approach for solving the OPF problems.

Published in:

Generation, Transmission & Distribution, IET  (Volume:5 ,  Issue: 1 )