By Topic

A Particle-Filtering Approach for Vehicular Tracking Adaptive to Occlusions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jacob Scharcanski ; Institute of Informatics, Federal University of Rio Grande do, Porto Alegre-RS , Brazil ; Alessandro Bof de Oliveira ; Pablo G. Cavalcanti ; Yessenia Yari

In this paper, we propose a new particle-filtering approach for handling partial and total occlusions in vehicular tracking situations. Our proposed method, which is named adaptive particle filter (APF), uses two different operation modes. When the tracked vehicle is not occluded, the APF uses a normal probability density function (pdf) to generate the new set of particles. Otherwise, when the tracked vehicle is under occlusion, the APF generates the new set of particles using a Normal-Rayleigh pdf. Our approach was designed to detect when a total occlusion starts and ends and to resume vehicle tracking after disocclusions. We have tested our APF approach in a number of traffic surveillance video sequences with encouraging results. Our proposed approach tends to be more accurate than comparable methods in the literature, and at the same time, it tends to be more robust to target occlusions.

Published in:

IEEE Transactions on Vehicular Technology  (Volume:60 ,  Issue: 2 )