By Topic

Automated Illustration of Molecular Flexibility

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bryden, A. ; Dept. of Comput. Sci., Univ. of Wisconsin, Madison, Madison, WI, USA ; Phillips, G.N. ; Gleicher, M.

In this paper, we present an approach to creating illustrations of molecular flexibility using normal mode analysis (NMA). The output of NMA is a collection of points corresponding to the locations of atoms and associated motion vectors, where a vector for each point is known. Our approach abstracts the complex object and its motion by grouping the points, models the motion of each group as an affine velocity, and depicts the motion of each group by automatically choosing glyphs such as arrows. Affine exponentials allow the extrapolation of nonlinear effects such as near rotations and spirals from the linear velocities. Our approach automatically groups points by finding sets of neighboring points whose motions fit the motion model. The geometry and motion models for each group are used to determine glyphs that depict the motion, with various aspects of the motion mapped to each glyph. We evaluated the utility of our system in real work done by structural biologists both by utilizing it in our own structural biology work and quantitatively measuring its usefulness on a set of known protein conformation changes. Additionally, in order to allow ourselves and our collaborators to effectively use our techniques we integrated our system with commonly used tools for molecular visualization.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:18 ,  Issue: 1 )