By Topic

Autonomous Passive Localization Algorithm for Road Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jaehoon Jeong ; University of Minnesota, Twin Cities, Minneapolis ; Shuo Guo ; Tian He ; David H. C. Du

Road networks are one of important surveillance areas in military scenarios. In these road networks, sensors will be sparsely deployed (hundreds of meters apart) for the cost-effective deployment. This makes the existing localization solutions based on the ranging ineffective. To address this issue, this paper introduces a novel approach based on the passive vehicular traffic measurement, called Autonomous Passive Localization (APL). Our work is inspired by the fact that vehicles move along routes with a known map. Using binary vehicle-detection time stamps, we can obtain distance estimates between any pair of sensors on roadways to construct a virtual graph composed of sensor identifications (i.e., vertices) and distance estimates (i.e., edges). The virtual graph is then matched with the topology of the road map, in order to identify where sensors are located on roadways. We evaluate our design outdoors on Minnesota roadways and show that our distance estimate method works well despite traffic noises. In addition, we show that our localization scheme is effective in a road network with 18 intersections, where we found no location matching error, even with a maximum sensor time synchronization error of 0.07 sec and a vehicle speed deviation of 10 km/h.

Published in:

IEEE Transactions on Computers  (Volume:60 ,  Issue: 11 )