By Topic

On the Interplay of Voltage/Frequency Scaling and Device Power Management for Frame-Based Real-Time Embedded Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Devadas, V. ; Dept. of Comput. Sci., George Mason Univ., Fairfax, VA, USA ; Aydin, H.

Voltage/Frequency Scaling (VFS) and Device Power Management (DPM) are two popular techniques commonly employed to save energy in real-time embedded systems. VFS policies aim at reducing the CPU energy, while DPM-based solutions involve putting the system components (e.g., memory or I/O devices) to low-power/sleep states at runtime, when sufficiently long idle intervals can be predicted. Despite numerous research papers that tackled the energy minimization problem using VFS or DPM separately, the interactions of these two popular techniques are not yet well understood. In this paper, we undertake an exact analysis of the problem for a real-time embedded application running on a VFS-enabled CPU and using multiple devices. Specifically, by adopting a generalized system-level energy model, we characterize the variations in different components of the system energy as a function of the CPU processing frequency. Then, we propose a provably optimal and efficient algorithm to determine the optimal CPU frequency as well as device state transition decisions to minimize the system-level energy. We also extend our solution to deal with workload variability. The experimental evaluations confirm that substantial energy savings can be obtained through our solution that combines VFS and DPM optimally under the given task and energy models.

Published in:

Computers, IEEE Transactions on  (Volume:61 ,  Issue: 1 )