By Topic

Threat Detection of Radioactive Contraband Incorporating Compton Scattering Physics: A Model-Based Processing Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Candy, J.V. ; Lawrence Livermore Nat. Lab., Livermore, CA, USA ; Chambers, D.H. ; Breitfeller, E.F. ; Guidry, B.L.
more authors

The detection of radioactive contraband is a critical problem in maintaining national security for any country. Gamma-ray emissions from threat materials challenge both detection and measurement technologies significantly. The development of a sequential, model-based Bayesian processor that captures both the underlying transport physics of gamma-ray emissions including Compton scattering and the measurement of photon energies offers a physics-based approach to attack this challenging problem. The inclusion of a basic radionuclide representation of absorbed/scattered photons at a given energy along with interarrival times is used to extract the physics information available from noisy measurements. It is shown that this representation leads to an “extended” physics-based structure that can be used to develop an effective sequential detection technique. The resulting model-based processor is applied to data obtained from a controlled experiment in order to assess its feasibility.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:58 ,  Issue: 1 )