Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

On Superlinear Scaling of Network Delays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Burchard, A. ; Dept. of Math., Univ. of Toronto, Toronto, ON, Canada ; Liebeherr, J. ; Ciucu, F.

We investigate scaling properties of end-to-end delays in packet networks for a flow that traverses a sequence of H nodes and that experiences cross traffic at each node. When the traffic flow and the cross traffic do not satisfy independence assumptions, we find that delay bounds scale faster than linearly. More precisely, for exponentially bounded packetized traffic, we show that delays grow with Θ(H logH) in the number of nodes on the network path. This superlinear scaling of delays is qualitatively different from the scaling behavior predicted by a worst-case analysis or by a probabilistic analysis assuming independence of traffic arrivals at network nodes.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:19 ,  Issue: 4 )