By Topic

A High-Quality-Factor Film Bulk Acoustic Resonator in Liquid for Biosensing Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wencheng Xu ; School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA ; Xu Zhang ; Seokheun Choi ; Junseok Chae

We report a high-quality-factor (Q) film bulk acoustic resonator (FBAR) operating in liquid environments. By integrating a microfluidic channel to a longitudinal-mode FBAR, a Q of up to 150 is achieved with direct liquid contacting. A transmission line model is used to theoretically predict the Q behavior of the FBAR. The model suggests an oscillatory pattern of Q as a function of the channel thickness and the acoustic wavelength in the liquid, which is experimentally verified by precisely controlling the channel thickness. This FBAR biosensor is characterized in liquids for the real-time in situ monitoring of the competitive adsorption/exchange of proteins, the Vroman effect. The FBAR offers a minimum detectable mass of 1.35 ng/cm2 and is successfully implemented in a Pierce oscillator as a portable sensing module.

Published in:

Journal of Microelectromechanical Systems  (Volume:20 ,  Issue: 1 )