Cart (Loading....) | Create Account
Close category search window
 

Theoretical Study of Optical Fiber Raman Polarizers With Counterpropagating Beams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kozlov, V.V. ; Dept. of Inf. Eng., Univ. of Brescia, Brescia, Italy ; Nuno, J. ; Ania-Castanon, J.D. ; Wabnitz, S.

The theory of two counter-propagating polarized beams interacting in a randomly birefringent fiber via the Kerr and Raman effects is developed and applied to the quantitative description of Raman polarizers in the undepleted regime. Here Raman polarizers, first reported by Martinelli, are understood as Raman amplifiers operating in the regime in which an initially weak unpolarized beam is converted into an amplified fully polarized beam towards the fiber output. Three parameters are selected for the characterization of a Raman polarizer: the degree of polarization of the outcoming beam, its state of polarization, and its gain. All of these parameters represent quantities that are averaged over all random polarization states of the initially unpolarized signal beam. The presented theory is computer friendly and applicable to virtually all practically relevant situations, including the case of co-propagating beams, and in particular to the undepleted as well as the depleted regimes of the Raman polarizer.

Published in:

Lightwave Technology, Journal of  (Volume:29 ,  Issue: 3 )

Date of Publication:

Feb.1, 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.