By Topic

Pairwise data clustering by deterministic annealing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
T. Hofmann ; Inst. fur Inf. II, Rheinrich-Wilhelms Univ., Bonn, Germany ; J. M. Buhmann

Partitioning a data set and extracting hidden structure from the data arises in different application areas of pattern recognition, speech and image processing. Pairwise data clustering is a combinatorial optimization method for data grouping which extracts hidden structure from proximity data. We describe a deterministic annealing approach to pairwise clustering which shares the robustness properties of maximum entropy inference. The resulting Gibbs probability distributions are estimated by mean-field approximation. A new structure-preserving algorithm to cluster dissimilarity data and to simultaneously embed these data in a Euclidian vector space is discussed which can be used for dimensionality reduction and data visualization. The suggested embedding algorithm which outperforms conventional approaches has been implemented to analyze dissimilarity data from protein analysis and from linguistics. The algorithm for pairwise data clustering is used to segment textured images

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:19 ,  Issue: 1 )