By Topic

Tensile-strained Ge and Ge1−xSnx layers for high-mobility channels in future CMOS Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zaima, Shigeaki ; Dept. of Crystalline Mater. Sci., Nagoya Univ., Nagoya, Japan ; Nakatsuka, O. ; Shimura, Y. ; Takeuchi, S.

We have investigated the growth and crystalline properties of tensile-strained Ge and Ge1-xSnx heteroepitaxial layers for high-mobility channels. The low temperature growth and the large misfit strain between Ge1-xSnx and Si leads to the high density of defects such as vacancy in Ge1-xSnx layers. They effectively enhance the propagation of misfit dislocations and the strain relaxation with suppressing the precipitation of Sn atoms from Ge1-xSnx layers. As a result, we succeeded in growing strain-relaxed Ge1-xSnx layers with a Sn content over 9% by controlling the dislocation structures. We also characterized the Hall mobility of Ge1-xSnx layers and found that the Sn incorporation into Ge effectively reduced the concentration of holes related to vacancy defects, and improved on the hole mobility.

Published in:

Solid-State and Integrated Circuit Technology (ICSICT), 2010 10th IEEE International Conference on

Date of Conference:

1-4 Nov. 2010