By Topic

A Combined State-Space Nodal Method for the Simulation of Power System Transients

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dufour, C. ; Opal-RT Technol., Montréal, ON, Canada ; Mahseredjian, J. ; Belanger, J.

This paper presents a new solution method that combines state-space and nodal analysis for the simulation of electrical systems. The presented flexible clustering of state-space-described electrical subsystems into a nodal method offers several advantages for the efficient solution of switched networks, nonlinear functions, and for interfacing with nodal model equations. This paper extends the concept of discrete companion branch equivalent of the nodal approach to state-space described systems and enables natural coupling between them. The presented solution method is simultaneous and enables benefitting from the advantages of two different modeling approaches normally exclusive from one another.

Published in:

Power Delivery, IEEE Transactions on  (Volume:26 ,  Issue: 2 )