By Topic

Multiuser MIMO Downlink Beamforming Design Based on Group Maximum SINR Filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In this paper, we aim to solve the multiuser multi-input multi-output (MIMO) downlink beamforming problem where one multi-antenna base station broadcasts data to many users. Each user is assigned multiple data streams and has multiple antennas at its receiver. Efficient solutions to the joint transmit-receive beamforming and power allocation problem based on iterative methods are proposed. We adopt the group maximum signal-to-interference-plus-noise-ratio (SINR) filter bank (GSINR-FB) as our beamformer which exploits receiver diversity through cooperation between the data streams of a user. The data streams for each user are subject to an average SINR constraint, which has many important applications in wireless communication systems and serves as a good metric to measure the quality of service (QoS). The GSINR-FB also optimizes the average SINR of its output. Based on the GSINR-FB beamformer, we find an SINR balancing structure for optimal power allocation which simplifies the complicated power allocation problem to a linear one. Simulation results verify the superiority of the proposed algorithms over previous works with approximately the same complexity.

Published in:

Signal Processing, IEEE Transactions on  (Volume:59 ,  Issue: 4 )