By Topic

Vector evaluated adaptive immune particle swarm optimization algorithm for multi-objective reactive power optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Juan Li ; Electr. Eng. Inst., Northeast Dianli Univ., Jilin, China ; Lin Yang ; Jinlong Liu ; Delong Yang
more authors

To solve the power system multi-objective reactive power optimization problem better, the shortcomings of the current multi-objective reactive power optimization were analyzed. The vector evaluated adaptive immune particle swarm optimization (VEAIPSO) algorithm based on evaluation vector is applied to multi-objective reactive power optimization in this paper which provides an effective method for solving the problem. Some conventional running models of reactive power optimization were analyzed. The improvement of the system static voltage stability margin was used as the one of the optimized objectives, and the minimum Jacobian matrix eigenvalue of the convergence trend was used as a voltage static stability scale. The multi-objective reactive power optimization model was established, its objective function contains reducing network power loss, improving the load node voltage level and increasing the static voltage stability margin. The operation simulation in this paper was done by simulation software MATLAB.

Published in:

Power System Technology (POWERCON), 2010 International Conference on

Date of Conference:

24-28 Oct. 2010