By Topic

A micromechanism study of thermosonic gold wire bonding on aluminum pad

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Xu, H. ; Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, LE11 3TU, United Kingdom ; Liu, C. ; Silberschmidt, V.V. ; Pramana, S.S.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3514005 

A micromechanism of thermosonic gold wire bonding was elaborated by examining its interfacial characteristics as a result of the bonding process, including the fragmentation of the native aluminum oxide layer on Al pads, and formation of initial intermetallic compounds (IMCs). It is found that the existence of an approximately 5 nm thick native oxide layer on original Al pads has a significant effect on the bonding, and the nucleation of IMCs during the bonding process must overcome this relatively inert thin film. Bonding strength was fundamentally determined by the degree of fragmentation of the oxide films, through which the formation of IMCs can be initiated due to the direct contact of the metal surfaces to be bonded. The extent of fracture the oxide layer was strongly influenced by the level of ultrasonic power, as at its high level alumina fragmentation becomes pervasive resulting in contiguous alloy interfaces and robust bonds. The IMCs formed at the interfaces were identified as Al4Al and AuAl2 with a thickness of 150–300 nm. The formation mechanism of such IMCs was explained by the effective heat of formation theory.

Published in:

Journal of Applied Physics  (Volume:108 ,  Issue: 11 )