By Topic

Novel Attributes of a Dual Material Gate Nanoscale Tunnel Field-Effect Transistor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sneh Saurabh ; Department of Electrical Engineering, Indian Institute of Technology, New Delhi, India ; M. Jagadesh Kumar

In this paper, we propose the application of a dual material gate (DMG) in a tunnel field-effect transistor (TFET) to simultaneously optimize the on-current, the off-current, and the threshold voltage and also improve the average subthreshold slope, the nature of the output characteristics, and immunity against the drain-induced barrier lowering effects. We demonstrate that, if appropriate work functions are chosen for the gate materials on the source side and the drain side, the TFET shows a significantly improved performance. We apply the technique of DMG in a strained double-gate TFET with a high-k gate dielectric to show an overall improvement in the characteristics of the device, along with achieving a good on-current and an excellent average subthreshold slope. The results show that the DMG technique can be applied to TFETs with different channel materials, channel lengths, gate-oxide materials, gate-oxide thicknesses, and power supply levels to achieve significant gains in the overall device characteristics.

Published in:

IEEE Transactions on Electron Devices  (Volume:58 ,  Issue: 2 )