By Topic

Range-free localization algorithm using local expected hop length in wireless sensor network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Myint, T.Z. ; Dept. of Inf. & Comput. Sci., Keio Univ., Yokohama, Japan ; Lynn, N. ; Ohtsuki, T.

Node location information plays a major role in wireless sensor network (WSN) location-aware applications. This paper analyzes the problem in estimation of expected hop length in multi-hop sensor network. Calculation of the traditional expected hop length is based on average node density over the network. although the expected hop length benefits a good location accuracy in a uniformly distributed high node density case, the location accuracy degrades when we consider low node density in the network. In this paper, we study the drawback of the conventional expected hop length that deteriorates the location accuracy and we propose the local expected hop length LEHL based on local node density of each sensor node. The core idea of using LEHL is to improve location accuracy by considering the appropriate expected hop length for real network deployment. Simulation results show that our proposal outperforms the conventional localization algorithm using expected hop length (LAEP).

Published in:

Communications and Information Technologies (ISCIT), 2010 International Symposium on

Date of Conference:

26-29 Oct. 2010