By Topic

Limit Set Dichotomy and Convergence of Cooperative Piecewise Linear Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Di Marco, M. ; Dipt. di Ing. dell''Inf., Univ. di Siena, Siena, Italy ; Forti, M. ; Grazzini, M. ; Pancioni, L.

This paper considers a class of nonsymmetric cooperative neural networks (NNs) where the neurons are fully interconnected and the neuron activations are modeled by piecewise linear (PL) functions. The solution semiflow generated by cooperative PLNNs is monotone but, due to the horizontal segments in the neuron activations, is not eventually strongly monotone (ESM). The main result in this paper is that it is possible to prove a peculiar form of the Limit Set Dichotomy for this class of cooperative PLNNs. Such a form is slightly weaker than the standard form valid for ESM semiflows, but this notwithstanding it permits to establish a result on convergence analogous to that valid for ESM semiflows. Namely, for almost every choice of the initial conditions, each solution of a fully interconnected cooperative PLNN converges toward an equilibrium point, depending on the initial conditions, as t → +∞. From a methodological viewpoint, this paper extends some basic techniques and tools valid for ESM semiflows, in order that they can be applied to the monotone semiflows generated by the considered class of cooperative PLNNs.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:58 ,  Issue: 5 )