System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Marine hydrokinetic turbine technology and the environment: Device-biota interactions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Crevison, S.H. ; Nat. Renewable Energy Lab., Golden, CO, USA ; Ye Li ; Thresher, R.

Because marine hydrokinetic (MHK) turbine technologies are still in their infancy, their impacts on the environment remain largely unknown. Although few empirical data exist for MHK technologies, more data are available for other man-made structures. This paper discusses fish, mammal, bird, and benthic organism interactions with MHK devices and other man-made structures that may be analogous to these MHK technologies. In experiments conducted on the Mississippi River Lock and Dam No. 2, the survival of several species of small and large fish that passed through an MHK turbine was 99%. No data on mammal, sea turtle, or bird interactions with MHK turbines were available, but other types of anthropogenic mortality and traumatic injuries to these groups of animals have been well documented. Collisions with ships and fishing gear have greatly impacted most groups of marine mammals. Large whales that inhabit shallow coastal waters and diving birds that use sight to pursue prey underwater are at risk for collision. However, many devices have a positive impact on fish or benthic organism populations because they act as fish aggregation devices or artificial reefs.

Published in:

OCEANS 2010

Date of Conference:

20-23 Sept. 2010