Cart (Loading....) | Create Account
Close category search window
 

Detection of red tides in the Southwestern Florida coastal region using ocean color data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Near real-time ocean color data from the Seaviewing Wide Field-of-view Sensor (SeaWiFS) was used to detect and trace harmful algal bloom (HAB) (also termed as red tides) in the Southwest Florida coastal water, which was treated as Case-2 water, i.e., its optical characteristics are influenced not only by phytoplankton and related particles, but also by other substances, that vary independently of phytoplankton, notably inorganic particles in suspension and yellow substances. Similar to Ahn et al. (2006), a red tide index was constructed from in-situ radiometric measurements of the three SeaWiFS bands centered at 411 nm, 510 nm, and 555 nm to achieve derivation of indices that are then related to absorbing characteristics of harmful algae (i.e., Lw at 443 nm) from which a best fit with a cubic polynomial function is obtained providing indices of higher ranges for HABs and lower and slightly reduced ranges for turbid and non-bloom water. In order to quantify the HABs in terms of chlorophyll (Chl), an empirical relationship is established between the RI and in-situ Chl in surface water which yields a Red tide index Chlorophyll Algorithm (RCA). In contrast, the band-ratio chlorophyll product of SeaWiFS in this complex coastal environment provided false information. The red tide that formed from November to December 2004 off SW Florida was revealed by RCA imagery, and was confirmed by field sampling to contain medium (104 to 105 cells L-1) to high (>105 cells L-1) concentrations of the toxic Karenia brevis. The RCA imagery also showed that the bloom started in mid October south of Charlotte Harbor, and that it developed and moved to the south and southwest in the subsequent weeks. Our results show that the SeaWiFS data provides an unprecedented tool for research and managers to study and monitor algal blooms in coastal environments.

Published in:

OCEANS 2010

Date of Conference:

20-23 Sept. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.